Fox-3 and PSF interact to activate neural cell-specific alternative splicing

نویسندگان

  • Kee K. Kim
  • Yong C. Kim
  • Robert S. Adelstein
  • Sachiyo Kawamoto
چکیده

Fox-1 family (Fox) proteins, which consist of Fox-1 (A2BP1), Fox-2 (Rbm9) and Fox-3 (NeuN) in mammals, bind to the RNA element UGCAUG and regulate alternative pre-mRNA splicing. However the mechanisms for Fox-regulated splicing are largely unknown. We analyzed the expression pattern of the three Fox proteins as well as neural cell-specific alternative splicing of a cassette exon N30 of nonmuscle myosin heavy chain (NMHC) II-B in the mouse central nervous system. Histological and biochemical analyses following fluorescence-activated cell sorting demonstrate a positive correlation of N30 inclusion and Fox-3 expression. Further, we identified polypyrimidine tract binding protein-associated splicing factor (PSF) as an interacting protein with Fox-3 by affinity-chromatography. In cultured cells, enhancement of N30 inclusion by Fox-3 depends on the presence of PSF. PSF enhances N30 inclusion in a UGCAUG-dependent manner, although it does not bind directly to this element. Fox-3 is recruited to the UGCAUG element downstream of N30 in the endogenous NMHC II-B transcript in a PSF-dependent manner. This study is the first to identify PSF as a coactivator of Fox proteins and provides evidence that the Fox-3 and PSF interaction is an integral part of the mechanism by which Fox proteins regulate activation of alternative exons via a downstream intronic enhancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing.

Signal-induced alternative splicing of the CD45 gene in human T cells is essential for proper immune function. Skipping of the CD45 variable exons is controlled, in large part, by the recruitment of PSF to the pre-mRNA substrate upon T cell activation; however, the signaling cascade leading to exon exclusion has remained elusive. Here we demonstrate that in resting T cells PSF is directly phosp...

متن کامل

Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities

An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1...

متن کامل

Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing.

Although multiple regulatory elements and protein factors are known to regulate the non-neuronal pathway of alternative processing of the calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA, the mechanisms controlling the neuron-specific pathway have remained elusive. Here we report the identification of Fox-1 and Fox-2 proteins as novel regulators that mediate the neuron-specific splici...

متن کامل

The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons

Previous studies have identified UGCAUG as an intron splicing enhancer that is frequently located adjacent to tissue-specific alternative exons in the human genome. Here, we show that UGCAUG is phylogenetically and spatially conserved in introns that flank brain-enriched alternative exons from fish to man. Analysis of sequence from the mouse, rat, dog, chicken and pufferfish genomes revealed a ...

متن کامل

A global regulatory mechanism for activating an exon network required for neurogenesis.

The vertebrate and neural-specific Ser/Arg (SR)-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that prom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011